Gröbner Deformations of Hypergeometric Differential Equations

Résumé

The Gröbner deformation of these GKZ hypergeometric systems reduces problems concerning hypergeometric functions to questions about commutative monomial ideals, and leads to an unexpected interplay between analysis and combinatorics.

In recent years, new algorithms for dealing with rings of differential operators have been discovered and implemented. A main tool is the theory of Gröbner bases, which is reexamined here from the point of view of geometric deformations. Perturbation techniques have a long tradition in analysis; Gröbner deformations of left ideals in the Weyl algebra are the algebraic analogue to classical perturbation techniques. The algorithmic methods introduced in this book are particularly useful for studying the systems of multidimensional hypergeometric partial differentiel equations introduced by Gel'fand, Kapranov and Zelevinsky. The Gröbner deformation of these GKZ hypergeometric systems reduces problems concerning hypergeometric functions to questions about commutative monomial ideals, and thus leads to an unexpected interplay between analysis and combinatorics. This book contains a number of original research results on holonomic systems and hypergeometric functions, and it raises many open problems for future research in this rapidly growing area of computational mathematics '

In recent years, new algorithms for dealing with rings of differential operators have been discovered and implemented. A main tool is the theory of Gröbner bases, which is reexamined here from the point of view of geometric deformations. Perturbation techniques have a long tradition in analysis; Gröbner deformations of left ideals in the Weyl algebra are the algebraic analogue to classical perturbation techniques. The algorithmic methods introduced here are particularly useful for studying the systems of multidimensional hypergeometric PDEs introduced by Gelfand, Kapranov and Zelevinsky. The Gröbner deformation of these GKZ hypergeometric systems reduces problems concerning hypergeometric functions to questions about commutative monomial ideals, and leads to an unexpected interplay between analysis and combinatorics. This book contains a number of original research results on holonomic systems and hypergeometric functions, and raises many open problems for future research in this area.

Spécifications produit

Contenu

Langue
en
Binding
Broché
Date de sortie initiale
14 août 2011
Nombre de pages
254
Illustrations
Non

Personnes impliquées

Auteur principal
Mutsumi Saito
Deuxième auteur
Bernd Sturmfels
Coauteur
Saito, Mutsumi
Editeur principal
Springer

Autres spécifications

Hauteur de l'emballage
14 mm
Largeur d'emballage
155 mm
Largeur du produit
155 mm
Livre d‘étude
Non
Longueur d'emballage
235 mm
Longueur du produit
235 mm
Poids de l'emballage
454 g
Police de caractères extra large
Non
Édition
Réimpression à couverture souple de l'original 1ère éd.2000

EAN

EAN
9783642085345

Sécurité des produits

Opérateur économique responsable dans l’UE
Afficher les données
Pas encore d'avis
Choisissez la version souhaitée
Binding : Broché
Informations sur les prix et commande
Le prix de ce produit est de 59 euros et 99 cents.
Au plus tard le 29 juillet chez vous
Vendu par bol
  • Livraison comprise avec bol
  • Retrait possible dans un point-relais bol
  • 30 jours de réflexion et retour gratuit
  • Service client 24h/24