Linear Stochastic Systems A Geometric Approach to Modeling, Estimation and Identification
Auteur:
Anders Lindquist
Giorgio Picci
- en
- Couverture rigide
- 9783662457498
- 11 mai 2015
- 720 pages
Résumé
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notionof the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notionof the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
Spécifications produit
Nous n'avons trouvé aucune spécification pour votre recherche '{SEARCH}'.
Contenu
- Langue
- en
- Version
- Couverture rigide
- Date de sortie initiale
- 11 mai 2015
- Nombre de pages
- 720
- Illustrations
- Non
Personnes impliquées
- Auteur principal
- Anders Lindquist
- Deuxième auteur
- Giorgio Picci
- Editeur principal
- Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Informations sur le fabricant
- Informations sur le fabricant
- Les informations du fabricant ne sont actuellement pas disponibles
Autres spécifications
- Hauteur de l'emballage
- 50 mm
- Largeur d'emballage
- 159 mm
- Largeur du produit
- 155 mm
- Livre d‘étude
- Oui
- Longueur d'emballage
- 241 mm
- Longueur du produit
- 235 mm
- Poids de l'emballage
- 1316 g
- Police de caractères extra large
- Non
- Édition
- 2015 ed.
EAN
- EAN
- 9783662457498
Sécurité des produits
-
Opérateur économique responsable dans l’UE
Info-bulle
Opérateur économique responsable dans l’UE
L'opérateur économique responsable dans l'UE veille au respect des obligations en matière de sécurité des produits. - Afficher les données
Vous trouverez cet article :
- Catégories
- Disponibilité
- Disponible à l'adresse suivante
- Langue
- Anglais
- Livre, ebook ou livre audio ?
- Livre
Choisissez la version souhaitée
Choisissez votre version
Informations sur les prix et commande
Le prix de ce produit est de 155 euros.
Attendu dans environ 3 semaines
Livraison
Nous mettons tout en oeuvre pour livrer cet article à temps. Des circonstances exceptionnelles peuvent toutefois retarder votre colis.
Options de livraison
Différentes options s'offrent à vous pour la livraison ou le retrait de votre commande. Les options exactes disponibles pour cette commande sont visibles lors du paiement.
Vendu par bol
- Livraison comprise avec bol
- Retrait possible dans un point-relais bol
- 30 jours de réflexion et retour gratuit
- Garantie légale via bol
- Service client 24h/24
Souvent achetés ensemble
Signaler cet article
Vous souhaitez signaler un contenu illégal, comme un article dangereux, illégal ou un contenu trompeur.
- Je souhaite faire un signalement en tant que client.
- Je veux faire un signalement en tant qu'autorité ou personne de confiance.
- Je veux faire un signalement en tant que propriétaire de partenaire
- Je veux faire un signalement en tant que propriétaire de marque
Vous n'êtes pas un client, une autorité, personne de confiance, propriétaire de marque ou un partenaire? Dans ce cas, utilisez le formulaire client (via le bouton ci-dessous) pour effectuer un signalement.