Definition and Improvement Over Time of Mathematical Estimation Models With validation on software cost estimation

Definition and Improvement Over Time of Mathematical Estimation Models

Samenvatting

This work shows the mathematical reasons why parametric estimation models fall short of providing correct estimates and define an approach that overcomes the causes of these shortfalls. The approach aims at improving parametric estimation models when any regression model assumption is violated for the data being analyzed. Violations can be that, the errors are x-correlated, the model is not linear, the sample is heteroscedastic, or the error probability distribution is not Gaussian. If data violates the regression assumptions and we do not deal with the consequences of these violations, we cannot improve the model and estimates will be incorrect forever. The novelty of this work is that we define and use a variety of feed-forward multi-layer neural networks to estimate prediction intervals (i.e. evaluate uncertainty), make estimates, and detect improvement needs. This approach has proved to be successful in many areas with a full validation in the field of software engineering and risk management. This book is suitable for Ph.D/PostDoc Students, Practitioners, and Scholars interested in the field of Bayesian Learning and non-linear Prediction Models.
Nog geen reviews

Productspecificaties

Inhoud

Taal
Engels
Bindwijze
Paperback
Verschijningsdatum
2014-03-28
Aantal pagina's
144 pagina's
Illustraties
Nee

EAN

EAN
9783659475337

Overige kenmerken

Extra groot lettertype
Nee
Oorspronkelijke releasedatum
2014-03-28
Subtitel
With validation on software cost estimation

Je vindt dit artikel in

Categorieën
Taal
Engels
Boek, ebook of luisterboek?
Boek
Studieboek of algemeen
Algemene boeken
Bindwijze: Paperback
43 99
2 - 3 weken Tooltip
Verkoop door bol.com
In winkelwagen
  • Gratis verzending
  • 30 dagen bedenktijd en gratis retourneren
  • Ophalen bij een bol.com afhaalpunt mogelijk
  • Dag en nacht klantenservice