Differential Privacy for Dynamic Data EBOOK Tooltip

Differential Privacy for Dynamic Data
  • Engels
  • E-book
  • 9783030410391
  • maart 2020
  • Adobe ePub
Alle productspecificaties
  • bol.com Kobo LeesappEbooks lezen is heel makkelijk. Na aankoop zijn ze direct beschikbaar op je Kobo e-reader en op je smartphone of tablet met de gratis bol.com Kobo app.

Productbeschrijving

This Springer brief provides the necessary foundations to understand differential privacy and describes practical algorithms enforcing this concept for the publication of real-time statistics based on sensitive data. Several scenarios of interest are considered, depending on the kind of estimator to be implemented and the potential availability of prior public information about the data, which can be used greatly to improve the estimators' performance. The brief encourages the proper use of large datasets based on private data obtained from individuals in the world of the Internet of Things and participatory sensing. For the benefit of the reader, several examples are discussed to illustrate the concepts and evaluate the performance of the algorithms described. These examples relate to traffic estimation, sensing in smart buildings, and syndromic surveillance to detect epidemic outbreaks.
Nog geen reviews

Productspecificaties

Inhoud

Taal
Engels
Bindwijze
E-book
Verschijningsdatum
maart 2020
Ebook formaat
Adobe ePub
Illustraties
Nee

Betrokkenen

Auteur
Jerome le Ny
Uitgever
Springer

Lees mogelijkheden

Lees dit ebook op
Desktop (Mac en Windows) | Kobo e-reader | Android (smartphone en tablet) | iOS (smartphone en tablet) | Windows (smartphone en tablet) | Overige e-reader

EAN

EAN
9783030410391

Je vindt dit artikel in

Categorieën
47 99
Direct beschikbaar
Verkoop door bol.com
Ebook
  • E-book is direct beschikbaar na aankoop
  • E-books lezen is voordelig
  • Dag en nacht klantenservice
  • Veilig betalen