High-Dimensional Data Analysis in Cancer Research Approaches to the Analysis of High-dimensional Data in Oncology

High-Dimensional Data Analysis in Cancer Research
  • Engels
  • Hardcover
  • 9780387697635
  • Druk: 1
  • oktober 2008
  • 392 pagina's
Alle productspecificaties

Samenvatting

Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.

Productspecificaties

Inhoud

Taal
Engels
Bindwijze
Hardcover
Druk
1
Verschijningsdatum
2009-01-01
Aantal pagina's
392 pagina's
Illustraties
Met illustraties

Betrokkenen

Redacteur
Xiaochun Li
Uitgever
Springer-Verlag New York Inc.

EAN

EAN
9780387697635

Overige kenmerken

Extra groot lettertype
Nee
Oorspronkelijke releasedatum
2008-10-01
Subtitel
Approaches to the Analysis of High-dimensional Data in Oncology
Thema Subject Code
MJCL

Je vindt dit artikel in

Categorieën
Taal
Engels
Boek, ebook of luisterboek?
Boek
Studieboek of algemeen
Algemene boeken
Nog geen reviews
Bindwijze: Hardcover
164 99
Uiterlijk 18 december in huis Tooltip
Verkoop door bol.com
  • Gratis verzending
  • 30 dagen bedenktijd en gratis retourneren
  • Ophalen bij een bol.com afhaalpunt mogelijk
  • Dag en nacht klantenservice