Pattern Recognition and Machine Learning

  • Engels
  • 1e druk
  • 9780387310732
  • augustus 2006
  • Hardcover
  • 738 pagina's
Alle productspecificaties

Christopher M. Bishop

Christopher Michael Bishop (born 7 April 1959) FRS FRSE FREng is the Laboratory Director at Microsoft Research Cambridge, Professor of Computer Science at the University of Edinburgh and a Fellow of Darwin College, Cambridge.

(Bron: Wikipedia. Beschikbaar onder de licentie Creative Commons Naamsvermelding/Gelijk delen.)

Samenvatting

Pattern Recognition and Machine Learning 1e editie is een boek van Christopher M. Bishop uitgegeven bij Springer-Verlag New York Inc.. ISBN 9780387310732

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Recensie(s)

From the reviews: This beautifully produced book is intended for advanced undergraduates, PhD students, and researchers and practitioners, primarily in the machine learning or allied areas...A strong feature is the use of geometric illustration and intuition...This is an impressive and interesting book that might form the basis of several advanced statistics courses. It would be a good choice for a reading group. John Maindonald for the Journal of Statistical Software In this book, aimed at senior undergraduates or beginning graduate students, Bishop provides an authoritative presentation of many of the statistical techniques that have come to be considered part of pattern recognition' or machine learning'. ... This book will serve as an excellent reference. ... With its coherent viewpoint, accurate and extensive coverage, and generally good explanations, Bishop's book is a useful introduction ... and a valuable reference for the principle techniques used in these fields. (Radford M. Neal, Technometrics, Vol. 49 (3), August, 2007) This book appears in the Information Science and Statistics Series commissioned by the publishers. ... The book appears to have been designed for course teaching, but obviously contains material that readers interested in self-study can use. It is certainly structured for easy use. ... For course teachers there is ample backing which includes some 400 exercises. ... it does contain important material which can be easily followed without the reader being confined to a pre-determined course of study. (W. R. Howard, Kybernetes, Vol. 36 (2), 2007) Bishop (Microsoft Research, UK) has prepared a marvelous book that provides a comprehensive, 700-page introduction to the fields of pattern recognition and machine learning. Aimed at advanced undergraduates and first-year graduate students, as well as researchers and practitioners, the book assumes knowledge of multivariate calculus and linear algebra ... . Summing Up: Highly recommended. Upper-division undergraduates through professionals. (C. Tappert, CHOICE, Vol. 44 (9), May, 2007) The book is structured into 14 main parts and 5 appendices. ... The book is aimed at PhD students, researchers and practitioners. It is well-suited for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bio-informatics. Extensive support is provided for course instructors, including more than 400 exercises, lecture slides and a great deal of additional material available at the book's web site ... . (Ingmar Randvee, Zentralblatt MATH, Vol. 1107 (9), 2007) This new textbook by C. M. Bishop is a brilliant extension of his former book Neural Networks for Pattern Recognition'. It is written for graduate students or scientists doing interdisciplinary work in related fields. ... In summary, this textbook is an excellent introduction to classical pattern recognition and machine learning (in the sense of parameter estimation). A large number of very instructive illustrations adds to this value. (H. G. Feichtinger, Monatshefte fur Mathematik, Vol. 151 (3), 2007) Author aims this text at advanced undergraduates, beginning graduate students, and researchers new to machine learning and pattern recognition. ... Pattern Recognition and Machine Learning provides excellent intuitive descriptions and appropriate-level technical details on modern pattern recognition and machine learning. It can be used to teach a course or for self-study, as well as for a reference. ... I strongly recommend it for the intended audience and note that Neal (2007) also has given this text a strong review to complement its strong sales record. (Thomas Burr, Journal of the American Statistical Association, Vol. 103 (482), June, 2008) This accessible monograph seeks to provide a comprehensive introduction to the fields of pattern recognition and machine learning. It presents a unified treatment of well-known statistical pattern recognition techniques. ... The book can be used by advanced undergraduates and graduate students ... . The illustrative examples and exercises proposed at the end of each chapter are welcome ... . The book, which provides several new views, developments and results, is appropriate for both researchers and students who work in machine learning ... . (L. State, ACM Computing Reviews, October, 2008) Chris Bishop's ... technical exposition that is at once lucid and mathematically rigorous. ... In more than 700 pages of clear, copiously illustrated text, he develops a common statistical framework that encompasses ... machine learning. ... it is a textbook, with a wide range of exercises, instructions to tutors on where to go for full solutions, and the color illustrations that have become obligatory in undergraduate texts. ... its clarity and comprehensiveness will make it a favorite desktop companion for practicing data analysts. (H. Van Dyke Parunak, ACM Computing Reviews, Vol. 49 (3), March, 2008)

4.4
van de 5
5 reviews
0
0
0
3
2
13
  • Praktisch toepasbaar
    4
  • Heldere uitleg
    4
  • Toegankelijk
    3
  • Volledig
    2
1
  • Moeilijk leesbaar
    1
Toon meer punten Toon alleen de eerste 3 punten
  • Goed boek over machine learning
    • Toegankelijk
    • Praktisch toepasbaar
    • Heldere uitleg

    Het boek ziet er misschien aanvankelijk intimiderend uit voor de minder wiskundige onder ons, maar als je bij het begin begint en goed je best doet om te begrijpen waar welke functies voor staan, is er goed door te komen. Het is een mooi studieboek, met v

    Vond je dit een nuttige review?
    1 0 Ongepaste review?
  • Duidelijke uitleg en plaatjes
    • Toegankelijk
    • Praktisch toepasbaar
    • Heldere uitleg

    Het is een super dik boek, wat betekent in dit geval ook super veel informatie. De informatie die erin staat is duidelijk en de plaatjes en daarmee de concepten worden goed uitgelegd. Een wiskundige achtergrond is handig, want soms worden er wat stapjes overgeslagen. (dit maakt het niveau wat hoger ook, fijn:))

    Vond je dit een nuttige review?
    0 0 Ongepaste review?
  • Duidelijk
    • Praktisch toepasbaar
    • Heldere uitleg
    • Volledig

    Interessant boek met goede en duidelijke uitleg. Zeker een aanrader voor mensen met een interesse in Artificial Intelligence.

    Vond je dit een nuttige review?
    0 0 Ongepaste review?
  • Goed
    • Praktisch toepasbaar

    Goed boek over de basis van ML, zeer wiskundig opgeschreven.

    Vond je dit een nuttige review?
    0 0 Ongepaste review?
  • Prima boek
    • Toegankelijk
    • Heldere uitleg
    • Volledig
    • Moeilijk leesbaar

    Diepte en overzicht

    Vond je dit een nuttige review?
    0 0 Ongepaste review?

Productspecificaties

Inhoud

Taal
Engels
Bindwijze
Hardcover
Verschijningsdatum
augustus 2006
Druk
1e druk
Afmetingen
24,1 x 19,1 x 4,5 cm
Aantal pagina's
738 pagina's
Illustraties
Met illustraties
ISBN13
9780387310732

Vertaling

Originele Titel
Pattern Recognition and Machine Learning

EAN

EAN
9780387310732

Overige kenmerken

Extra groot lettertype
Nee

Je vindt dit artikel in

Categorieën
Nieuw of tweedehands
Nieuw
Specialisme
Kansberekening & Statistiek
Onderwerp
Computers & IT
Verschijningsvorm
Hardcover
Bindwijze: Hardcover
73, 22
Op voorraad

Voor 23:59 uur besteld, morgen in huis Tooltip

+ bezorgopties

Verkoop door bol.com
Ontdek het nu voor 9,99 p.j.
Altijd gratis verzending

Bezorgopties

  • Doordeweeks ook ’s avonds in huis
  • Ook zondag in huis (bestel voor za 23:59)
  • Vandaag nog in huis (bestel voor 12:00, bezorging tussen 18:00 en 22:00)
Bekijk alle bezorgopties

* Indien beschikbaar op bezorgadres. Log in voor de mogelijkheden

  • Gratis verzending
  • 30 dagen bedenktijd en gratis retourneren
  • Ophalen bij een bol.com afhaalpunt mogelijk
  • Dag en nacht klantenservice
  • Cadeautje? Laat het voor je inpakken en bezorgen
Andere verkopers (2)

Vaak samen gekocht

Vragen en antwoorden (0)