# Volume Conjecture for KnotsEBOOK Tooltip Ebooks kunnen worden gelezen op uw computer en op daarvoor geschikte e-readers.

Taal: Engels
• Ebooks lezen is heel makkelijk. Na aankoop zijn ze direct beschikbaar op je Kobo e-reader en op je smartphone of tablet met de gratis bol.com Kobo app.

Uitgever: Springer
• Engels
• E-book
• 9789811311505
• augustus 2018
Alle productspecificaties

## Samenvatting

The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-matrix that is associated with the N-dimensional representation of the Lie algebra sl(2;C). The volume conjecture was first stated by R. Kashaev in terms of his own invariant defined by using the quantum dilogarithm. Later H. Murakami and J. Murakami proved that Kashaev's invariant is nothing but the N-dimensional colored Jones polynomial evaluated at the Nth root of unity. Then the volume conjecture turns out to be a conjecture that relates an algebraic object, the colored Jones polynomial, with a geometric object, the volume.

In this book we start with the definition of the colored Jones polynomial by using braid presentations of knots. Then we state the volume conjecture and give a very elementary proof of the conjecture for the figure-eight knot following T. Ekholm. We then give a rough idea of the "proof", that is, we show why we think the conjecture is true at least in the case of hyperbolic knots by showing how the summation formula for the colored Jones polynomial "looks like" the hyperbolicity equations of the knot complement.

We also describe a generalization of the volume conjecture that corresponds to a deformation of the complete hyperbolic structure of a knot complement. This generalization would relate the colored Jones polynomial of a knot to the volume and the Chern–Simons invariant of a certain representation of the fundamental group of the knot complement to the Lie group SL(2;C).

We finish by mentioning further generalizations of the volume conjecture.

## Productspecificaties

### Inhoud

Taal
Engels
Bindwijze
E-book
Verschijningsdatum
augustus 2018
Ebook formaat
Illustraties
Nee

### Betrokkenen

Auteur
Hitoshi Murakami Yoshiyuki Yokota
Co-auteur
Yoshiyuki Yokota
Uitgever
Springer

### Lees mogelijkheden

Lees dit ebook op
Android (smartphone en tablet) | Kobo e-reader | Desktop (Mac en Windows) | iOS (smartphone en tablet) | Windows (smartphone en tablet) | Overige e-reader

EAN
9789811311505

### Overige kenmerken

Thema Subject Code
PBPD

### Je vindt dit artikel in

Categorieën
Taal
Engels
Studieboek of algemeen
Algemene boeken
Boek, ebook of luisterboek?
Ebook
Nog geen reviews
Kies je bindwijze
Direct beschikbaar
Verkoop door bol.com
• E-book is direct beschikbaar na aankoop
• E-books lezen is voordelig
• Dag en nacht klantenservice
• Veilig betalen