Practical Explainable AI Using Python Explications de modèles d'intelligence artificielle à l'aide de bibliothèques, d'extensions et de frameworks basés sur Python

  • en
  • Broché
  • 9781484271575
  • 15 décembre 2021
  • 344 pages
Toutes les spécifications de l'article

Résumé

Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers. You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, you will be introduced to model explainability for unstructured data, classification problems, and natural language processing-related tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks. What You'll Learn Review the different ways of making an AI model interpretable and explainable Examine the biasness and good ethical practices of AI models Quantify, visualize, and estimate reliability of AI models Design frameworks to unbox the black-box models Assess the fairness of AI models Understand the building blocks of trust in AI models Increase the level of AI adoption Who This Book Is For AI engineers, data scientists, and software developers involved in driving AI projects/ AI products.

Spécifications produit

Contenu

Langue
en
Binding
Broché
Date de sortie initiale
15 décembre 2021
Nombre de pages
344

Personnes impliquées

Auteur principal
Pradeepta Mishra
Editeur principal
Apress

Autres spécifications

Hauteur de l'emballage
23 mm
Largeur d'emballage
174 mm
Largeur du produit
178 mm
Livre d‘étude
Oui
Longueur d'emballage
247 mm
Longueur du produit
254 mm
Poids de l'emballage
823 g
Édition
1ère éd.

EAN

EAN
9781484271575
Pas encore d'avis

Choisissez la version souhaitée

Informations sur les prix et commande

Le prix de ce produit est de 68 euros et 09 cents.
Au plus tard le 8 juin chez vous
Vendu par bol
  • Livraison comprise avec bol
  • Retrait possible dans un point-relais bol
  • 30 jours de réflexion et retour gratuit
  • Service client 24h/24