Mastering Machine Learning Algorithms Ebook Tooltip Expert techniques for implementing popular machine learning algorithms, fine-tuning your models, and understanding how they work, 2nd Edition

Afbeeldingen

Inkijkexemplaar

Artikel vergelijken

  • Engels
  • E-book
  • 9781838821913
  • 31 januari 2020
  • Adobe ePub
Alle productspecificaties
  • Je leest ebooks gemakkelijk op je Kobo e-reader, of op je smartphone of tablet met de bol.com Kobo app. Let op! Ebooks kunnen niet geannuleerd of geretourneerd worden.

Samenvatting

Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems

Key Features
  • Updated to include new algorithms and techniques
  • Code updated to Python 3.8 & TensorFlow 2.x
  • New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applications
Book Description

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains.

You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks.

By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.

What you will learn
  • Understand the characteristics of a machine learning algorithm
  • Implement algorithms from supervised, semi-supervised, unsupervised, and RL domains
  • Learn how regression works in time-series analysis and risk prediction
  • Create, model, and train complex probabilistic models
  • Cluster high-dimensional data and evaluate model accuracy
  • Discover how artificial neural networks work – train, optimize, and validate them
  • Work with autoencoders, Hebbian networks, and GANs
Who this book is for

This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.

Productspecificaties

Inhoud

Taal
en
Bindwijze
E-book
Oorspronkelijke releasedatum
31 januari 2020
Ebook Formaat
Adobe ePub
Illustraties
Nee

Betrokkenen

Hoofdauteur
Giuseppe Bonaccorso

Lees mogelijkheden

Lees dit ebook op
Desktop (Mac en Windows) | Kobo e-reader | Android (smartphone en tablet) | iOS (smartphone en tablet) | Windows (smartphone en tablet)

Overige kenmerken

Editie
2
Studieboek
Ja

EAN

EAN
9781838821913
Nog geen reviews

Prijsinformatie en bestellen

De prijs van dit product is 33 euro en 99 cent.
Direct beschikbaar
Verkoop door bol
  • E-book is direct beschikbaar na aankoop
  • E-books lezen is voordelig
  • Dag en nacht klantenservice
  • Veilig betalen
Houd er rekening mee dat je downloadartikelen niet kunt annuleren of retourneren. Bij nog niet verschenen producten kun je tot de verschijningsdatum annuleren.
Zie ook de retourvoorwaarden

Alle bindwijzen en edities (3)

  • 33,99
    Direct beschikbaar
  • 28,99
    Direct beschikbaar
  • 32,90
    Op voorraad. Nu besteld, vrijdag in huis Tooltip